Eden API Documentation for Performing Inference
Base URL
The base URL for the Eden inference API is:
https://www.ai.eden42.com/api/v1/chat/completions
Authentication
To authenticate, include your API key in the header of each request:
Authorization: Bearer YOUR_API_KEY
Models
- eden-8b: Lightweight model made by an advanced fine-tune of LLAMA-3 8B
- eden-70b: Mid-range model made by an advanced fine-tune of LLAMA-3 70B
- eden-120b: High-performance model made by an advanced fine-tune of GOLIATH 120B
Parameters
- model (string): Model identifier. Options:
eden-8b
,eden-70b
,eden-120b
. - messages (array): The array of string messages in the chat you want to provide the model.
- temperature (float): Controls the randomness of the output. Range: 0.0 to 1.0. Default: 0.7.
- top_k (int): The number of highest probability vocabulary tokens to keep for top-k filtering. Default: 50.
- top_p (float): The cumulative probability of parameter highest probability tokens to keep for nucleus sampling. Range: 0.0 to 1.0. Default: 0.9.
- min_k (int): Minimum number of tokens before stopping generation. Default: 1.
- top_a (float): Alpha for controlling the probability distribution. Default: 1.0.
- stop_sequences (array of strings): A list of strings where the model will stop generating further tokens.
- max_tokens (int): Maximum number of tokens to generate. Default: 50.
Request and Response
Example Request
Endpoint:
POST /v1/inference
Headers:
Content-Type: application/json Authorization: Bearer YOUR_API_KEY
Request Body:
{ "model": "eden-8b", "messages": ["Message 1", "Message 2", "Message 3", "Message 4"], "temperature": 0.7, "top_k": 50, "top_p": 0.9, "min_k": 1, "top_a": 1.0, "stop_sequences": ["The end.", "They lived happily ever after."], "max_tokens": 50 }
Example Response
Response Body:
{ "model": "eden-8b", "messages": ["Message 1", "Message 2", "Message 3", "Message 4"], "completion": "Once upon a time, in a land far...the end.", "temperature": 0.7, "top_k": 50, "top_p": 0.9, "min_k": 1, "top_a": 1.0, "stop_sequences": ["The end.", "They lived happily ever after."], "max_tokens": 50 }
API Call Models
Python Example
import requests url = "https://api.edenmodels.com/v1/inference" headers = { "Content-Type": "application/json", "Authorization": "Bearer YOUR_API_KEY" } data = { "model": "eden-8b", "messages": ["Message 1", "Message 2", "Message 3", "Message 4"], "temperature": 0.7, "top_k": 50, "top_p": 0.9, "min_k": 1, "top_a": 1.0, "stop_sequences": ["The end.", "They lived happily ever after."], "max_tokens": 50 } response = requests.post(url, headers=headers, json=data) print(response.json())
Curl Example
curl -X POST https://api.edenmodels.com/v1/inference \ -H "Content-Type: application/json" \ -H "Authorization: Bearer YOUR_API_KEY" \ -d '{ "model": "eden-8b", "messages": ["Message 1", "Message 2", "Message 3", "Message 4"], "temperature": 0.7, "top_k": 50, "top_p": 0.9, "min_k": 1, "top_a": 1.0, "stop_sequences": ["The end.", "They lived happily ever after."], "max_tokens": 50 }'
JavaScript Example (using fetch)
fetch("https://api.edenmodels.com/v1/inference", { method: "POST", headers: { "Content-Type": "application/json", "Authorization": "Bearer YOUR_API_KEY" }, body: JSON.stringify({ model: "eden-8b", messages: ["Message 1", "Message 2", "Message 3", "Message 4"], temperature: 0.7, top_k: 50, top_p: 0.9, min_k: 1, top_a: 1.0, stop_sequences: ["The end.", "They lived happily ever after."], max_tokens: 50 }) }) .then(response => response.json()) .then(data => console.log(data)) .catch(error => console.error("Error:", error));
Error Handling
Example Error Response
If the request fails, the API will return an error response.
{ "error": { "code": 400, "message": "Invalid model identifier." } }
Ensure to check for error codes and handle them appropriately in your implementation.